© msf

A solution to deliver prostheses to a greater number of patients

3D printing of upper-limb prosthetic devices

Since 2016, The MSF Foundation ventured into the world of 3D technology in an attempt to address the poor access to prosthetics that is the reality across much of the world. If amputees are to regain their physical integrity and autonomy, improving this access is vital.

Today, the project team is endeavouring to demonstrate that producing prostheses using 3D printing technology is adapted to MSF programme contexts and quicker and less expensive than traditionally-manufactured prostheses.  

In an entirely personalised protocol, the project team are working with our patient-volunteers. They are currently testing 3D printing to produce so called cosmetic, passive, definitive prostheses. The devices are scaled to fit the rest of the body and harmonised with each patient’s skin colour. Ultimately, prostheses will enable users to carry out a range of tasks such as cooking, driving or using a tool, according to their individual needs.

Around 40 million amputees
There are around 40 million amputees in the world, and many of these are conflict victims. Only 5% of these have access to some kind of prosthetic care.  

Upper limb prostheses
Few organizations in the world provide upper limb prostheses. The Médecins Sans Frontières Foundation has therefore decided to focus on this amputee group initially.

In spite of what one might think, mobility is not only dependent on the lower limbs. The upper are limbs are mobilized for example when driving or using crutches.

Physical integrity
All the patients interviewed described regaining their physical integrity as a priority.

Cost of the project in 2018: €182,528 

3D Prosthesis

The six key steps in designing 3D prostheses:

/ 1 A personalised clinical assessment determines the patient’s needs and expectations.

/ 2 The scanner produces a 3D image of the surface of the stump. 

/ 3 Modelling software is used to design the socket and the prosthesis.

/ 4 In the 3D printing process, successive layers of plastic or other materials are laid down on top of each other.

/ 5 Tests are made to verify the adjustment of the prosthesis and operate possible modifications.

/ 6 An evaluation of the prosthesis and its benefits is carried out after three months of use. 

* Socket: interface between the stump of the patient and the prosthesis.

2019 2018 2017 2016 The team

© Alice Bétular

Retrouvez le reportage du magazine de la santé (France 5) sur l'hôpital d'Amman.  Antibiothérapie contre les infections, prise en charge de la douleur, soutien psychologique, rééducation et prothèses imprimées grâce à la technologie 3D...via une approche global l'hôpital d'Amman accompagne les patients vers le plus d’autonomie possible.

Noor, 1st trial of burn mask 

Noor, 7, from Fallujah, Iraq, was burned in the face following an explosion. To limit its scars, a compression mask has been made by our teams. 

Two years of the 3D program

From the first impression of a 3D prosthesis to the creation of masks for burn victims : 2 years of action thanks to you.

3D prostheses at TF1 Journal

Find the reportage made by TF1 journalists in Amman with patients and the project team. You will discover the story of Ibrahim, amputated from left arm, who will be able to return to his job as a driver thanks to 3D printed prostheses.


La main de l'hôpital

Hanan, 4 years old, and his family share their daily life with us. Thanks to "la main de l'hôpital", the little girl rediscovers the simple pleasures of games of her age.

Manufacturing 3D-printed prostheses

Polyurethane, weight, manufacturing time… Everything you need to know about the manufacture of 3D- printed prostheses in just three minutes.

Prothèses 3D

© msf

Work in progress: other applications

The exploration of 3D technology has revealed potential for other applications in the field of reconstructive surgery, such as 3D printed masks for burns patients and 3D-printed anatomical replica for pre-surgical simulations.

The Economist video on the 3D Prosthesis project

What happens to our amputee patients? Listen to the story of Ahmed, a 14-year old Syrian refugee who lost his arm in a barrel bomb attack 

Prothèses 3D

© msf

Interview with Clara Nordon, director of The MSF Foundation

“Trials on 3D-printed upper limb prosthetics have already been carried out in academic environments and by start-ups, but this is the first time they’ve been tested in the field”.

Read the Francetvinfo article

Prothèses 3D

© msf

Conferences for sharing our experience

  • Arab Health Exhibition, Dubai. At the end of January, the project team attended a major medical congress in the Middle East. Pierre Moreau and Safa Herfat spoke at the “3D medical printing” session.      
  • Rodin4D Users Days. At the beginning of February, the team presented the project to international prosthetics specialists attending these User Days. 


Interview with Hatim Masadeh

Hakim, an ortho-prosthetic technician working on the project, explains the differences between the conventional method of manufacturing prosthetic devices and the 3D printing method. 

© msf

Volunteer patients

Jordanians, children, Syrian refugees, Palestinians, Iraqis or Yeminis… five volunteer patients have been identified to help with the project, some war-wounded others victims of domestic accidents. These volunteer patients are now actively collaborating and will be giving detailed feedback on their needs and experience of the prosthesis, especially in terms of day-to-day comfort and use.

© msf

A personalised approach

Since April 2017, the team has been holding detailed clinical interviews with each patient to study his or her specific needs. This personalised approach helps determine the precise benefits expected and choose the most suitable device for the patient:  a passive cosmetic prosthesis with different tools or an active prosthesis with a cable system for activating a flexible thumb. 

Prothèses 3D

© msf

3D scanning and printing

The project team is currently testing different 3D modelling and printing software programs. Working in close collaboration with patients, the team is also comparing traditionally-manufactured sockets with those printed using 3D technology in the “FabLab’ in Irbid, Jordan.

© msf

Skin-coloured prosthetics

At the moment, the prosthetic devices manufactured are painted post-printing with acrylic paint. The right skin tone is determined with the patient. Other paint solutions are being explored.


© msf

Capitalising on existing initiatives

In November and December 2016, the project team travelled to the United States to meet academics, start-ups and non-profits and capitalise on initiatives already under way in the 3D technology and disability field.

The team

© msf

Pierre Moreau


Pierre studied physiotherapy and has a Master of rehabilitation engineering.  He has worked for MSF since 2015. After a first mission in Ukraine and a second in Haiti, he joined the 3D-printed prosthetics project in November 2016. He arrived in Amman in February 2017.

Find out more

© msf

Safa Herfat

Biomedical engineer

Holding a Ph.D. in biomedical engineering, Safa is an Assistant Professor in the department of Orthopaedic Surgery at University of California. He works in the program of reconstructive surgery in Amman in Jordan and he is the technical coordinator of the 3D prosthetics project.  

Find out more

Prothèse 3D

© msf

Samar Ismail

Supervisor of the 3D project in Amman

To guarantee the continuity and development of the project in Jordan, a 3D supervisor position has been created in Amman. Samar Ismail, a physiotherapist, is now in charge of implementing this project and ensuring its sustainability. She organises the work of the team in collaboration with the patients.

Find out more